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1. Introduction

The purpose of this article is to analyse the role of the active layer depth in the biofilm-
nutrient model. We consider a simple one dimensional system modeling a single microbial
species which is growing by nutrient consumption. The microbial species occupies the biofilm
region which is separated by an interface from the bulk-liquid region which has a high nutrient
concentration. The nutrient also diffuses across the interface in a region called the active
layer depth, which is where most of the biofilm growth activity takes place; as the biofilm
grows, the interface moves and the species push into the bulk-liquid region.

Microbes play an important role in almost every material system. To model their growth,
the two important components are the movement of the species and the consumption of
the nutrient, or substrate, on which they thrive. The biofilm region typically consists of
microbial cells, inert biomass, and extracellular polymeric substances (EPS), which is a gel-
like polymeric substance produced by the microbial cells [7, 4, 6]. There exists an extensive
amount of work that offers various models dealing with the growth and competition between
multiple microbial species [1]. However, in this article we restrict ourselves to studying the
growth of a single species with a single substrate. We also do not assume any decay of the
biofilm though that is typically incorporated in the equation governing the growth of the
biofilm.

Although the model that describes the biofilm-nutrient dynamics is a non-stationary one,
most authors [4, 1] consider a stationary approximation. This approximation proves to be
reasonable owing to the scale at which the biofilm is observed, which is around [1, 100][µm]
[1]. Further, this size warrants the use of a linear growth function rather than the well used
non-linear Monod expression; an advantage of the linear function is that it even provides the
stationary system with analytical solutions. Though this does greatly simplify the system,
the errors vary greatly with the rest of the parameters. Moreover, some authors [4] even
consider a semi-infinite biofilm domain, but we stick to the finite realm.

Biofilm-nutrient dynamics have been studied for a very long time. The distribution of the
nutrient concentration throughout the domain plays an important role in determining the
active layer depth. Some of these models have survived for more than a century [3] and are
included in our analysis. In this article we primarily study the biofilm-nutrient model, the
velocity of the interface separating the biofilm and the bulk liquid region and its relation to
the active layer depth.

The outline of this article is as follows. In Sec. 2 we discuss the equations governing
the biofilm-nutrient dynamics and give the distinction between the non-stationary and the
stationary model. Sec. 3 deals with the numerical scheme used to solve system and in Sec. 4
we discuss the concept of the active layer depth and its different definitions. The analytical
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solutions to the stationary problem are provided and discussed in Sec. 5. Finally, Sec. 6
deals with the velocity of the interface separating the biofilm and the bulk-liquid region and
we conclude by quantifying the error between the non-stationary and the stationary system
in Sec. 7.

2. Biofilm-Nutrient Model

Consider a region of length L ([m]) Ω = (0, L) ⊂ R comprising of the biofilm region
Ωb = (0, γ) and the bulk-liquid region Ωl = (γ, L), where γ ≡ γ(t) ([m]) is the interface
separating the biofilm and the bulk-liquid region. The equation governing the nutrient
concentration, N(x, t) ([kg/m3]), is

Nt −∇((dN,bχ(0,γ) + dN,wχ(γ,L))∇N) = −χ(0,γ)m(N) in Ω. (2.1a)

Here dN,b and dN,w ([m2/s]) are the diffusivities of N in Ωb and Ωl, respectively, and m is the
uptake rate which describes how fast the nutrient concentration is used by the biofilm. The
biofilm is assumed to consist of a single species and its concentration is constant 1[kg/m3]
throughout Ωb. To account for the growth of the biofilm, the velocity inside the biofilm,
v(x, t) ([m/s]), satisfies the conservation law

∇ · v = g(N) in Ωb, (2.1b)

where g is the growth rate of the biofilm. The velocity in turn depends on a growth potential,
π(x, t), as

v = −λ∇π in Ωb, (2.1c)

where the constant λ = 1. Finally, to accommodate the growing biofilm, the interface
γ = ∂Ωb ∩ ∂Ωl moves and satisfies the equation

dγ

dt
= v|x=γ. (2.1d)

The above system is completed with the following set of boundary conditions:

∇N |x=0 = 0, N(L, t) = Nbd. (2.1e)

Equation (2.1e) consist of the impermeable boundary condition at x = 0 and the Dirichlet
boundary condition at x = L. For the growth potential, the boundary conditions are

∇π|x=0 = 0, π|x=γ = 0. (2.1f)

As with N , an impermeable boundary condition is placed on π at x = 0 in (2.1f) along with
a Dirichlet value at x = γ.

The uptake rate is given by the well known Monod function

m(N) =
κN

kN +N
, (2.2)

where the constant kN ([kg/m3]) is called the Monod half-life and κ ([1/s]) is the specific
substrate uptake rate. The growth rate g considered in this article is given by

g(N) = κBm(N), (2.3)

where κB is a constant incorporating the maximum uptake rate and some yield coefficient.
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The Monod expression (2.2) can be approximated by a constant or a linear function
depending on the ration kN

N
:

kN
N

<< 1 =⇒ m(N) ≈ κ (2.4a)

1 <<
kN
N

=⇒ m(N) ≈ κ

kN
N. (2.4b)

These two approximations are studied in more detail in the subsequent sections.
The system (2.1) above describes the non-stationary uptake of the nutrient concentration

and the biofilm growth. Depending on the values of the parameters used, the system can be
approximated well by its stationary counterpart i.e. the equation (2.1a) can be replaced by

−∇((dN,bχ(0,γ) + dN,wχ(γ,L))∇N) = −χ(0,γ)m(N) in Ω. (2.5)

To further study the effect of the diffusivities dN,b and dN,w, (2.5) is rewritten as

−∇((RN,bwχ(0,γ) + 1χ(γ,L))∇N) = −χ(0,γ)
m(N)

dN,w
in Ω, (2.6)

with RN,bw =
dN,b
dN,w

. The stationary system is complete with the same boundary conditions

as in the non-stationary case.

3. Numerical Method

Spatial Discretisation. To compute the numerical solution to the non-stationary system
(2.1a), we employ a cell-centered finite difference scheme with a staggered grid. The two
subsets Ωb and Ωl of domain Ω = (0, L) are covered with nx = 100 cells each, with xi being
the center of each cell denoted by [xi− 1

2
, xi+ 1

2
], 1 ≤ i ≤ 2nx.

Time Discretisation. We use implicit time stepping with time steps tn = nτ , where
τ ≈ O(10)[s] is the uniform time step.

The approximate solution to the nutrient concentration, the growth potential, and the
velocity is denoted by Nn

i ≈ N(xi, tn), πni ≈ π(xi, tn) and vni ≈ v(xi− 1
2
, tn), respectively. The

approximation to the interface is denoted by γn ≈ γ(tn). Adopting the vector notation Nn =
[Nn

1N
n
2 . . . N

n
2nx ]

T , π = [πn1π
n
2 . . . π

n
2nx ]

T , and v = [vn1 v
n
2 . . . v

n
2nx+1]

T , the numerical scheme can
we written as

Nn −Nn−1

τ
+ ∆h

[
dN,bInx 0

0 dN,wInx

]
Nn = −

[
Inx 0
0 0

]
m(Nn), (3.1)

∆hπ
n = g([Nn

1N
n
2 . . . N

n
x ]T ) (3.2)

vn = ∇hπ
n (3.3)

γn+1 − γn

τ
= vnnx+1, (3.4)

where Inx is the nx × nx identity matrix, ∆h and ∇h are the discrete Laplacian (2nd order)
and gradient (1st order) operators, respectively. The initial condition on N is taken as

N0
i = Nbd, ∀ 1 ≤ i ≤ 2nx, γ

0 =
L

2
(3.5)

Newton’s method was used to compute the solution of (3.1): Given Nn−1
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Parameter Value
nx 100
τ 10.8 [s]
ε 1× 10−8

imax 30

Table 1. Values used in the numerical scheme in Sec. 3

while (|δN |> ε) or (i < imax) do

R(Nn) = [R1(N
n)R2(N

n) . . . R2nx(N
n)]T =

Nn −Nn−1

τ
−∆h

[
dN,bInx 0

0 dN,wInx

]
+

[
Inx 0
0 0

]
m(Nn)

J =


∂R1

∂Nn
1

∂R1

∂Nn
2

. . . ∂R1

∂Nn
2nx

∂R2

∂Nn
1

∂R2

∂Nn
2

. . . ∂R2

∂Nn
2nx

...
... . . .

...
∂R2nx

∂Nn
1

∂R2nx

∂Nn
2

. . . ∂R2nx

∂Nn
2nx


δN = −J−1R

Nn → Nn + δN

i = i+ 1

end while

where ε is a fixed tolerance and imax is the maximum number of iterations that are performed
for each time step.

At the (n+ 1)th time step, since the interface, γn+1, changes, we regrid the domain Ω
keeping the number of cells nx in Ωb and Ωl fixed. Then, before solving for Nn+1 in (3.1) we
perform a linear interpolation to compute the values Nn at the new grid points.

The numerical scheme was solved using MATLAB. The values of the parameters used in
the code are given in Tab. 1. The implementation of the numerical scheme was only marred
by standard difficulties. Theory about the basic techniques and their implementation can
be found in [5].

4. Active Layer Depth

The active layer, Ωa ≡ Ωa(t) ⊂ Ωb, is defined as the region in the biofilm domain Ωb

where the nutrient concentration N is high enough for there to be active metabolism. One
quantity we are interested in is the depth |Ωa | of the active layer and how it depends on the
various parameters used. There are various definitions followed by different authors and in
this article we consider some which have survived almost a century as well. In addition, we
add our own calculations.

4.1. Active Layer Depth as in [Hill] [3]. Some papers like [Pirt] [6], [Coyte] [2] follow
the formula provided by [Hill] [3] assuming that over an extended period of time, the active

4



Figure 1. Illustration of the active layer depth as in [Hill] [3] (4.1).

layer has a constant depth which may be estimated as

|Ωa(t)| =

√
2NbddN,b
m(Nbd)

(4.1)

where m(Nbd) is used as the maximum uptake rate of the nutrient by the biofilm. This
approach gives an underestimate of the active layer depth since the uptake rate is not constant
during the simulation period. Formula (4.1) is taken from [Hill] [3], where the derivation
assumes that at the active layer depth, |Ωa(t)|, the nutrient concentration satisfies

N(x, t) = 0, ∇N(x, t) = 0 ∀x ∈ ∂Ωa(t)\{γ} (4.2)

In other words, at the active layer depth the nutrient concentration is 0 and hence diffusion
must stop since the concentration cannot become negative. This is illustrated in Fig. 1.

4.2. Active Layer Depth as in [Dockery, Klapper] [4]. [Dockery, Klapper] [4] have
similar formula for the case of an infinite domain

|Ωa(t)| =

√
NbddN,b
m(Nbd)

(4.3)

The no flux boundary condition is imposed at x = −∞. In contrast to the boundary
conditions imposed by [Hill] [3], the absence of boundary conditions is illustrated in Fig. 2

4.3. Active Layer Depth as in [McCarty] [8]. A Dirichlet condition on the nutrient
concentration N at the active layer depth can further be imposed i.e.

N(x, t) = N∗, ∇N(x, t) = 0 ∀x ∈ ∂Ωa(t)\{γ} (4.4)

for a fixed N∗([kg/m3]), N∗ > 0, which allows N to be non-negative in the “inactive layer”
Ωb\Ωa. This is illustrated in Fig. 3

Considering the above three definitions, we define the active layer to be the region

Ωa(t) = {x < γ(t) : N(x, t) > N∗} (4.5)
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Figure 2. Illustration of the active layer depth as in [KD02] [4] (4.2). Notice
the absence of boundary conditions in determining the active layer depth.

Figure 3. Illustration of the active layer depth as in [McCarty] [8] (4.3).

without imposing the no-flux boundary condition as in (4.1) and (4.3). Further, by imposing
the no-flux condition at x = 0 allows the nutrient concentration to be non-constant in the
“inactive layer”.

The size of the active layer depth |Ωa| is influences the velocity of the biofilm domain
Ωb. Following the reduced model of [KD02], the growth rate of the biofilm domain Ωb is
determined by the rate of change of the interface γ(t) i.e. by the velocity of the interface

dγ

dt
= v|γ(t) = −∇π|γ(t) (4.6)

The dependence of the growth rate on the parameters Nbd, RN,bw, κb is discussed in the
subsequent sections. For the linear and constant cases, the active layer depth is explictily
calculated as well. Tab . 2 lists the typical values of these parameters.
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Parameter Value
L O(10−4) [m]
Nbd 10−3 [kg/m3]
dN,b 1.833× 10−9 [m2/s]
dN,w 1.66× 10−9 [m2/s]
T O(0.036× 105) [s]
κ 2× 10−5 [s−1]
kN 2× 10−5 [kg/m3]
κB 0.5

Table 2. Typical parameter values

taken from [Alpkvist, Klapper] [1].

Remark. Henceforth, the numerical active layer depth will refer to the value computed
according to (4.5) and the analytical active layer depth will be computed using (4.3).

5. Analytical Solutions to the Stationary Problem

When the expression for the uptake rate m is taken as either of its approximations as
given in (2.4), the analytical solutions to the stationary problem (2.5) can be computed and
are discussed below.

5.1. Case 1: m(N) = κ. The Monod expression can be approximated as m(N) ≈ κ when
N >> kN . In this case, the solution to the stationary problem (2.5) can be calculated and
is given by

N(x) =

{
κ

2dN,b
(x2 − γ2) +N c

γ , x ∈ (0, γ)
Nbd−Nc

γ

L−γ (x− γ) +N c
γ , x ∈ (γ, L)

, (5.1)

N c
γ =

(
Nbd
L−γ −

κγ
dN,w

)
(L− γ).

(5.2)

In this case, the active layer would be

Ωa(t) = {x :
κ

2dN,b
(x2 − γ2) +

(
Nbd
L−γ −

κγ
dN,w

)
(L− γ) > N∗} (5.3)

Note that not all parameter values give physical meaning to (5.1). An important criterion is

N(0) =
κ

2dN,b
(−γ2) +N c

γ > 0 (5.4)

to ensure that N > 0 in Ωb. Letting γ = βL, for some fraction β > 0 (typically β ≈ 1
2
), we

get a constraint on the size of the domain L:

L <

√√√√ NbddN,w
κ

β(1 + β( 1
2RN,bw

− 1))
(5.5)
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Figure 4. Illustration of Ex. 5.1 showing the values of the nutrient concentra-
tion N for the constant case. Also shown is the active layer depth (analytical
and numerical). The values of the parameters used are L = 8 × 10−5[m],
RN,bw = 0.01, Nbd = 10−3[kg/m3], N∗

Nbd
= 0.1 and the interface is at γ = L

2
.

Example 5.1. Using the parameters listed in Tab. 2, we plot the solution given in (5.1) in
Fig. 4. Also shown is the interface, the analytical (4.3) and the numerical (4.5) active layer
depths.

Example 5.2. Using the parameters listed in Tab. 2, we plot the computed numerical ( (4.5))
and analytical ( (4.3)) values of the active depth layer as a function of RN,bw using equation
(5.1) in Fig. 5.

Example 5.3. Using the parameters listed in Tab. 2, we plot the showing the computed
numerical ( (4.5)) and analytical ( (4.3)) values of the active depth layer as a function of Nbd

using equation (5.1) in Fig. 6.

From the above examples, when m is constant, the following observations are made about
the active layer depth |Ωa|.

(1) |Ωa| increases with increasing RN,bw. This increase is expected since increasing RN,bw

increases the flux dN,b∇N |x=γ leading to more nutrient diffusion across the interface
and increasing the biofilm growth.

(2) |Ωa| increases with increasing Nbd. This increase is expected as well since a higher
nutrient concentration leads to more diffusion across the interface which leads to an
increase in the biofilm growth.

5.2. Case 2: m(N) = κ
kN
N . In the case when N << kN , the Monod expression can

be approximated as m(N) ≈ κ
kN
N . The solution to the stationary problem (2.5) can be
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Figure 5. Illustration of Ex. 5.2 showing the values of the active layer depth
for the linear case as a function of RN,bw. The values of the parameters used
are L = 8 × 10−5[m], Nbd = 10−3[kg/m3], N∗

Nbd
= 0.1 and the interface is at

γ = L
2
.

Figure 6. Illustration of Ex. 5.3 showing the values of the active layer depth
for the linear case as a function of RN,bw. The values of the parameters used
are L = 8× 10−5[m], RN,bw = 0.01, N∗

Nbd
= 0.1 and the interface is at γ = L

2
.

calculated, and is given by

N(x) =

{
N l
γ

eργ+e−ργ
(eρx + e−ρx) , x ∈ (0, γ)

(
Nbd−N l

γ

L−γ )(x− γ) +N l
γ , x ∈ (γ, L)

, (5.6)

N l
γ =

(
Nbd
L−γ

)(
RN,bwρ tanh (ργ) + 1

L−γ

)−1
, (5.7)

ρ =
√

κ
dN,bkN

=
1√

NbddN,b
m(Nbd)

=
√

κ
RN,bwdN,wkN

. (5.8)
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Figure 7. Illustration of Ex. 5.4 showing the values of the nutrient concen-
tration N for the linear case. Also shown is the active layer depth (analytical
and numerical). The values of the parameters used are L = 1 × 10−4[m],
RN,bw = 0.01, Nbd = 10−7[kg/m3], N∗

Nbd
= 0.1 and the interface is at γ = L

2
.

Remark. The expression for ρ justifies the analytical active layer formula given by [Dockery,
Klapper] [4] in (4.3): the width of the region where N ∼ O(1) is 1

ρ
.

Based on these calculations we now get that the active layer is

Ωa(t) = {x : eρx + e−ρx >
N∗
Nbd

((L− γ)RN,bwρ tanh ργ + 1) (eργ + e−ργ)} (5.9)

Example 5.4. Using the parameters listed in Tab. 2, we plot the solution given in (5.6) in
Fig. 7. Also shown is the interface, the analytical (4.3) and the numerical (4.5) active layer
depths.

Example 5.5. Using the parameters listed in Tab. 2, we plot the computed numerical ( (4.5))
and analytical ( (4.3)) values of the active depth layer as a function of RN,bw using equation
(5.6) in Fig. 8.

Example 5.6. Using the parameters listed in Tab. 2, we plot the computed numerical ( (4.5))
and analytical ( (4.3)) values of the active depth layer as a function of Nbd using equation
(5.6) in Fig. 9.

Remark. In this example, the value of N∗ is fixed to 10−8[kg/m3] instead of taking it as a
fraction of Nbd. This is because if N∗

Nbd
= const, then the numerical active layer depth (4.5)

would be a constant as can be seen in (5.9).

Based on the above examples, when m is linear, similar observations can be made about
the active layer depth |Ωa|.

(1) |Ωa| increases with increasing RN,bw. As in the constant case, this increase is expected
since increasingRN,bw increases the flux dN,b∇N |x=γ leading to more nutrient diffusion
across the interface and increasing the biofilm growth.
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Figure 8. Illustration of Ex. 5.5 showing the values of the active layer depth
for the linear case as a function of RN,bw. The values of the parameters used
are L = 1 × 10−4[m], Nbd = 10−7[kg/m3], N∗

Nbd
= 0.1 and the interface is at

γ = L
2
.

Figure 9. Illustration of Ex. 5.6 showing the values of the active layer depth
for the linear case as a function of Nbd. The values of the parameters used are
L = 1 × 10−4[m], RN,bw = 0.01, N∗ = 1 × 10−8[kg/m3] and the interface is at
γ = L

2
.

(2) |Ωa| increases with increasing Nbd. This increase is also expected since a higher
nutrient concentration leads to more diffusion across the interface which leads to an
increase in the biofilm growth.

Active Layer Depth Comparison. Though the active layer depth |Ωa | follows the same
behaviour for the constant and linear case, there are still a few subtleties that are observed.

11



(1) The depth |Ωa | increases with increasing RN,bw but is more “sensitive” to parameter
variation in the constant case than in the linear case.

(2) The depth | Ωa | increases with increasing Nbd but as in the case with RN,bw, the
constant case is more “sensitive” to small perturbations in Nbd than the linear case.
Also, in the linear case, the analytical active layer depth is independent of Nbd

and stays constant.

6. Interface Velocity

The growth of the biofilm drives the interface γ. In this section, we study the velocity of
the interface v|γ and its relation to the active layer depth |Ωa|. Further, we also study the
dependence of the velocity on the parameters used in Tab. 2.

6.1. Interface Velocity and the Active Layer Depth. For the linear case (5.6) with
an infinite domain, [Dockery, Klapper] [4] derive a constant interface velocity which leads
to a linear growth of the interface. This constant growth rate is a result of an invariance
in the nutrient concentration because of the infinite domain and is simply the active layer
depth multiplied with the biofilm growth function at the interface: consider the stationary
biofilm-nutrient model for the infinite domain

−∇(dN(x)∇N) = −χ(−∞,γ)m(N) in (−∞, L) (6.1a)

∇N |x=−∞ = 0, N(L, t) = Nbd (6.1b)

∇ · v = g(N), v = −∇π in (−∞, L) (6.1c)

∇π|x=−∞ = 0, π|x=γ = 0. (6.1d)

with dN(x) = dN,bχ(−∞,γ) + dN,wχ(γ,L). For the specific case, as in [4], when m(N) = κ
kN
N

and g(N) = κBm(N), the solution to the above system (6.1) is given by

N(x) =

{
N l
γ

eργ
eρx , x ∈ (∞, γ)

(
Nbd−N l

γ

L−γ )(x− γ) +N l
γ , x ∈ (γ, L)

, (6.2)

N l
γ =

(
Nbd
L−γ

)(
RN,bwρ+ 1

L−γ

)−1
, (6.3)

where

ρ =
√

κ
dN,bkN

=
1√

NbddN,b
m(Nbd)

=
1

|Ωa|
=
√

κ
RN,bwdN,wkN

. (6.4)

Using the definition of the active layer depth (4.3) (|Ωa| = 1
ρ
), the interface velocity can be

written as

v|γ =

∫ γ

−∞
−∇2π =

∫ γ

−∞
g(m(N)) =

∫ γ

−∞
κB

κ

kN
N =

(
κBκ

kN

)
N l
γ

ρ
=

1

ρ
κB

(
κN l

γ

kN

)
(6.5a)

=
1

ρ
g(m(N l

γ)) = |Ωa|g(N l
γ) (6.5b)

i.e. the velocity is the product of the active layer depth and the growth rate at the interface
and is a constant if either the growth rate g or N l

γ is a constant. In [4], L = γ + l, for a

constant l > 0, which leads to a constant N l
γ.
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Now consider the stationary system (6.2) for a finite domain i.e. consider the system

−∇(dN(x)∇N) = −χ(0,γ)m(N) in (0, L) (6.6a)

∇N |x=0 = 0, N(L, t) = Nbd (6.6b)

∇ · v = g(N), v = −∇π in (0, L) (6.6c)

∇π|x=0 = 0, π|x=γ = 0. (6.6d)

When m = κ and g = κBm the solution to the above system (6.6) is given by (5.1). In this
case, the velocity of the interface is

v|γ =

∫ γ

−∞
κBκ = (κBκ) γ = γ (κBκ) = γg(N c

γ). (6.7)

We note that in this case, the velocity of the interface is not a constant (since γ ≡ γ(t) is
not constant). If the velocity in (6.7) is to be viewed as the product of the active layer depth
and the growth rate at the interface, then the active layer depth would have to be defined as

|Ωa(t)| = γ (6.8)

However, when m = κ
kN
N and g = κBm the solution to the above system (6.6) is given

by (5.6) and in this case the velocity of the interface is

v|γ =

∫ γ

−∞
κB

κ

kN
N =

(
κBκ

kN

)
N l
γ tanh (ργ)

ρ
=

(
tanh (ργ)

ρ

)
κB

(
κN l

γ

kN

)
(6.9a)

=

(
tanh (ργ)

ρ

)
g(m(N l

γ)) = tanh (ργ)|Ωa|g(N l
γ). (6.9b)

Similar to the constant case (6.7), the velocity of the interface is not constant. Again, if
the velocity (6.9)is to be interpreted as the product of the active layer depth and the growth
rate at the interface, then the active layer depth would have to be defined as

|Ωa(t)| =
tanh (ργ)

ρ
. (6.10)

Motivated by the above formulation, we now compare the velocity of the interface v|γ and
the product of the numerical active layer depth (4.5) and the growth rate at the interface
for the non-stationary model (2.1a).

Example 6.1. We plot the time-averaged values of the velocity v|γ and the product of the
active layer depth |Ωa | and the growth rate at the interface g(Nγ), where Nγ is the nutrient
concentration at the interface γ, in Fig. 10. The two values are computed as a function of
the boundary value Nbd.

Example 6.2. We plot the time-averaged values of the velocity v|γ and the product of the
active layer depth |Ωa | and the growth rate at the interface g(Nγ), where Nγ is the nutrient
concentration at the interface γ, in Fig. 11. The two values are computed as a function of
the ratio RN,bw.

The above two examples 6.1 and 6.2 show a strong correlation between the velocity of
the interface v|γ and the product of the active layer depth |Ωa | and the growth rate at the
interface g(Nγ). Though there is a difference in the magnitude of the values but that is to
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Figure 10. Illustration of Ex. 6.1 showing the time-averaged velocity of the
biofilm interface vγ and the time-averaged value of the product |Ωa | ×g(Nγ)
as Nbd varies. The values of the parameters used are L = 1×10−4[m], RN,bw =
0.01, N∗

Nbd
= 0.1 and the interface is at γ = L

2
.

Figure 11. Illustration of Ex. 6.2 showing the time-averaged velocity of the
biofilm interface vγ and the time-averaged value of the product |Ωa | ×g(Nγ)
as RN,bw varies. The values of the parameters used are L = 1 × 10−4[m],
Nbd = 1× 10−5[kg/m3], N∗

Nbd
= 0.1 and the interface is at γ = L

2
.

be expected since the numerical active layer depth (4.5) depends on an a priori constant N∗.
This difference can be minimised, however, by adjusting the value of N∗ accordingly.

6.2. Interface Velocity and Parameter Dependence. The interface velocity v|γ also
depends on the different parameters that are used, namely κB, Nbd, RN,bw. This dependence
is explored in the examples below.
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Figure 12. Illustration of Ex. 6.3 showing the relation between the velocity
of the biofilm interface γ and κB (the velocity has been non-dimensionalised
by dividing it with a factor of 1[m/s]). The values of the parameters used are
L = 1 × 10−5[m], RN,bw = 0.01, Nbd = 1 × 10−7[kg/m3], N∗

Nbd
= 0.1 and the

interface is at γ = L
2
. Also shown is the linear fit with a slope of 1.00007.

Example 6.3. The dependence of the time-averaged velocity of the interface v|γ on κB is
shown in Fig. 12. The increase is as expected since the parameter κB incorporates the yield
coefficient and the maximum uptake rate. The slope of the linear fit, ≈ 1, is because of the
direct dependence of v on κB

∇ · v = κB
κN

kN +N
(6.11)

Example 6.4. The dependence of the time-averaged velocity of the interface v|γ on the
Dirichlet value Nbd is shown in Fig. 13. The increase is expected since a greater nutrient
concentration increases the rate of the biofilm growth and hence the velocity of the interface.

Example 6.5. The dependence of the time-averaged velocity of the interface v|γ on the

ration RN,bw is shown in Fig. 14. The increase is expected since RN,bw =
dN,b
dN,w

and an

increase in RN,bw implies an increase in dN,b, thereby increasing the flux dN,b∇N which leads
to more diffusion of the nutrient across the interface and hence increases the growth rate of
the biofilm.

Summary. Based on the above three examples, we make the following observations about
the velocity dγ

dt
= v|x=γ of the interface.

(1) v|x=γ increases linearly with κB.
(2) v|x=γ increases with increasing nutrient concentration Nbd.
(3) v|x=γ increases with increasing RN,bw.
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Figure 13. Illustration of Ex. 6.4 showing the relation between the velocity
of the biofilm interface γ and Nbd. The values of the parameters used are
L = 1× 10−6[m], RN,bw = 0.01, N∗

Nbd
= 0.1 and the interface is at γ = L

2
.

Figure 14. Illustration of Ex. 6.5 showing the relation between the velocity
of the biofilm interface γ and Nbd. The values of the parameters used are
L = 1 × 10−5[m], RN,bw = 0.01, Nbd = 1 × 10−7[kg/m3], N∗

Nbd
= 0.1 and the

interface is at γ = L
2
.

7. Error Analysis

The above sections deal with the linear and constant cases of the stationary problem (2.5)
and depending on the magnitude of the ratio kN

Nbd
, the analytical solutions (5.1) and (5.6)

provide an approximation to the original non-stationary problem (2.1a). Hence, for particular
values of the parameters, namely kN , Nbd and L, the non-stationary solution would follow
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L[m] Nbd [kg/m3] kN [kg/m3] kN
Nbd

% Error L2Linear % Error L2Constant

1× 10−3 10−8 2× 10−5 2× 103 28.2037 −
1× 10−4 10−8 2× 10−5 2× 103 8.1641 −
1× 10−5 10−8 2× 10−5 2× 103 1.271 −
1× 10−6 10−8 2× 10−5 2× 103 2.7× 10−3 −
1× 10−3 10−6 2× 10−5 2× 101 28.2662 −
1× 10−4 10−6 2× 10−5 2× 101 8.286 −
1× 10−5 10−6 2× 10−5 2× 101 1.9426 −
1× 10−6 10−6 2× 10−5 2× 101 2.8814× 10−2 10.8792
1× 10−5 10−4 2× 10−5 2× 10−1 28.9346 2.6403
1× 10−6 10−4 2× 10−5 2× 10−1 5.8037× 10−1 2.3885× 10−2

Table 3. Error values between the stationary approximation and the non-
stationary solution as discussed in Sec. 7. The symbol “ − ” marks the cases
where the nutrient concentration takes negative values.

the same behaviour as the stationary solution, which is easier to study owing to the existence
of its analytical expression.

In this section, the aforementioned approximation is quantified by calculating the L∞((0, T ), L2(0, L))
error

Relative Error (%) =
‖Ns −Nns‖L∞((0,T ),L2(0,L))

‖Nns‖L∞((0,T ),L2(0,L))

× 100, (7.1)

where Nns is the solution to the non-stationary problem (2.1a) and Ns is the solution to
the stationary problem (2.5) with uptake rate as given by (5.1) or (5.6), referred to as the
constant and the linear case, respectively.

We simulate the non-stationary and stationary cases and calculate the error for different
choices of the size L of the domain (L ∈ [1, 1000][µm]) and of the Dirichlet boundary value
Nbd; see Tab. 3.

The data in Tab. 3 supports the following observations:

(1) For a fixed L, as the ratio kN
Nbd

decreases, the non-stationary system is better ap-
proximated by the constant case than the linear case as is reflected by the relative
error.

(2) When fixing kN
Nbd

and decreasing L, the relative error decreases. Mathematically, this

can be proved by non-dimensionalising the non-stationary system (2.1a).

Remark. For certain cases, the analytical solution to the stationary problem with constant
m as in (5.1) violates condition (5.5) thereby leading to Ns taking negative values. Such
cases are marked by a “− ” in Tab. 3.

8. Summary

In this article, we primarily explored the growth aspect of the biofilm-nutrient model. We
started by exploring the various definitions of the active layer depth |Ωa | and its dependence
on the different parameters used in the biofilm-nutrient model. Then, we also computed
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the active layer depth for the analytical solutions to the stationary problem (2.5) to get a
comparison between these different definitions.

Next, we studied the dependence of the velocity of the interface on the boundary value
Nbd and the ratio RN,bw. Further, some manipulation allowed us to analyse the role of the
active layer depth in the velocity of the interface, and this role was then explored for the
original non-stationary system (2.1a).

Finally, since we used the analytical solutions to the stationary problem as an approxima-
tion to the non-stationary system, we quantified the error of this approximation to validate
our analysis.
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